Problem

Source: 2011 Saudi Arabia Pre-TST January p4

Tags: geometry, square, fixed



Points $A ,B ,C ,D$ lie on a line in this order. Draw parallel lines $a$ and $b$ through $A$ and $B$, respectively, and parallel lines $c$ and $d$ through $C$ and $D$, respectively, such that their points of intersection are vertices of a square. Prove that the side length of this square does not depend on the length of segment $BC$.