Problem

Source: Intermediate p3

Tags: Intermediate p3, geometry



Given a convex quadrilateral $ABCD$ with $AB = BC $and $\angle ABD = \angle BCD = 90$.Let point $E$ be the intersection of diagonals $AC$ and $BD$. Point $F$ lies on the side $AD$ such that $\frac{AF}{F D}=\frac{CE}{EA}$.. Circle $\omega$ with diameter $DF$ and the circumcircle of triangle $ABF$ intersect for the second time at point $K$. Point $L$ is the second intersection of $EF$ and $\omega$. Prove that the line $KL$ passes through the midpoint of $CE$. Proposed by Mahdi Etesamifard and Amir Parsa Hosseini - Iran