Problem

Source: 2021 Dutch BxMO TST p1

Tags: geometry, parallel, cyclic quadrilateral



Given is a cyclic quadrilateral $ABCD$ with $|AB| = |BC|$. Point $E$ is on the arc $CD$ where $A$ and $B$ are not on. Let $P$ be the intersection point of $BE$ and $CD$ , let $Q$ be the intersection point of $AE$ and $BD$ . Prove that $PQ \parallel AC$.