Note that $\angle ALB=\angle BIC=90^\circ+\angle A/2$ and $\angle LBA=90^\circ-\angle ABI=90^\circ-\angle B/2$, hence $\frac{AL}{AB}=\frac{\cos \angle B/2}{\cos \angle A/2}$.
Similarly, $\frac{AK}{AC}=\frac{\cos \angle C/2}{\cos \angle A/2}$, so by dividing these two relations and using $\frac{AB}{AC}=\frac{\sin \angle C}{\sin \angle B}$, we infer that $$\frac{AL}{AK}=\frac{\cos \angle B/2}{\cos \angle C/2} \cdot \frac{\sin \angle C}{\sin \angle B}=\frac{\sin \angle C/2}{\sin \angle B/2}$$
In addition, $\frac{\sin \angle LAI}{\sin \angle IAK}=\frac{\sin \angle B/2}{\sin \angle C/2}$, hence $\frac{AL}{AK} \cdot \frac{\sin \angle LAI}{\sin \angle IAK}=1$.
To conclude, let $M \equiv AI \cap LK$ and note that $\frac{LM}{MK}=\frac{AL}{AK} \cdot \frac{\sin \angle LAI}{\sin \angle IAK}=1,$ and so we are done.