Problem

Source: KMO 2021 P2

Tags: combinatorics



For positive integers $n, k, r$, denote by $A(n, k, r)$ the number of integer tuples $(x_1, x_2, \ldots, x_k)$ satisfying the following conditions. $x_1 \ge x_2 \ge \cdots \ge x_k \ge 0$ $x_1+x_2+ \cdots +x_k = n$ $x_1-x_k \le r$ For all positive integers $m, s, t$, prove that $$A(m, s, t)=A(m, t, s).$$