Problem

Source: KMO 2021 P1

Tags: geometry, angle bisector, circumcircle



Let $ABC$ be an acute triangle and $D$ be an intersection of the angle bisector of $A$ and side $BC$. Let $\Omega$ be a circle tangent to the circumcircle of triangle $ABC$ and side $BC$ at $A$ and $D$, respectively. $\Omega$ meets the sides $AB, AC$ again at $E, F$, respectively. The perpendicular line to $AD$, passing through $E, F$ meets $\Omega$ again at $G, H$, respectively. Suppose that $AE$ and $GD$ meet at $P$, $EH$ and $GF$ meet at $Q$, and $HD$ and $AF$ meet at $R$. Prove that $\dfrac{\overline{QF}}{\overline{QG}}=\dfrac{\overline{HR}}{\overline{PG}}$.