Problem

Source: Mathematics Regional Olympiad of Mexico Center Zone 2016 P2

Tags: game, combinatorics, winning strategy, game strategy



There are seven piles with $2014$ pebbles each and a pile with $2008$ pebbles. Ana and Beto play in turns and Ana always plays first. One move consists of removing pebbles from all the piles. From each pile is removed a different amount of pebbles, between $1$ and $8$ pebbles. The first player who cannot make a move loses. a) Who has a winning strategy? b) If there were seven piles with $2015$ pebbles each and a pile with $2008$ pebbles, who has a winning strategy?