Problem

Source: 2021 Iberoamerican Mathematical Olympiad, P2

Tags: geometry, circumcircle



Consider an acute-angled triangle $ABC$, with $AC>AB$, and let $\Gamma$ be its circumcircle. Let $E$ and $F$ be the midpoints of the sides $AC$ and $AB$, respectively. The circumcircle of the triangle $CEF$ and $\Gamma$ meet at $X$ and $C$, with $X\neq C$. The line $BX$ and the tangent to $\Gamma$ through $A$ meet at $Y$. Let $P$ be the point on segment $AB$ so that $YP = YA$, with $P\neq A$, and let $Q$ be the point where $AB$ and the parallel to $BC$ through $Y$ meet each other. Show that $F$ is the midpoint of $PQ$.