Problem

Source: RMM 2021/4

Tags: RMM 2021, combinatorics, board, RMM



Consider an integer \(n \ge 2\) and write the numbers \(1, 2, \ldots, n\) down on a board. A move consists in erasing any two numbers \(a\) and \(b\), then writing down the numbers \(a+b\) and \(\vert a-b \vert\) on the board, and then removing repetitions (e.g., if the board contained the numbers \(2, 5, 7, 8\), then one could choose the numbers \(a = 5\) and \(b = 7\), obtaining the board with numbers \(2, 8, 12\)). For all integers \(n \ge 2\), determine whether it is possible to be left with exactly two numbers on the board after a finite number of moves. Proposed by China