Problem

Source: RMM 2021/6

Tags: polynomial, algebra, RMM



Initially, a non-constant polynomial $S(x)$ with real coefficients is written down on a board. Whenever the board contains a polynomial $P(x)$, not necessarily alone, one can write down on the board any polynomial of the form $P(C + x)$ or $C + P(x)$ where $C$ is a real constant. Moreover, if the board contains two (not necessarily distinct) polynomials $P(x)$ and $Q(x)$, one can write $P(Q(x))$ and $P(x) + Q(x)$ down on the board. No polynomial is ever erased from the board. Given two sets of real numbers, $A = \{ a_1, a_2, \dots, a_n \}$ and $B = \{ b_1, \dots, b_n \}$, a polynomial $f(x)$ with real coefficients is $(A,B)$-nice if $f(A) = B$, where $f(A) = \{ f(a_i) : i = 1, 2, \dots, n \}$. Determine all polynomials $S(x)$ that can initially be written down on the board such that, for any two finite sets $A$ and $B$ of real numbers, with $|A| = |B|$, one can produce an $(A,B)$-nice polynomial in a finite number of steps. Proposed by Navid Safaei, Iran