Let $P$ is a regular $(2n+1)$-gon in the plane, where $n$ is a positive integer. We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$ , if the line segment $\overline{ES}$ contains no other points that lie on the sides of $P$ except $S$ . We want to color the sides of $P$ in $3$ colors, such that every side is colored in exactly one color, and each color must be used at least once. Moreover, from every point in the plane external to $P$ , at most $2$ different colors on $P$ can be seen (ignore the vertices of $P$ , we consider them colorless). Find the largest positive integer $n$ for which such a coloring is possible.
Problem
Source: 2021 3nd Final Mathematical Cup Junior Division P4 FMC
Tags: Coloring, combinatorics, regular polygon