Problem

Source: 2021 3nd Final Mathematical Cup Junior Division P2 FMC

Tags: geometry, Circumcenter, equal angles



Let $ABC$ be an acute triangle, where $AB$ is the smallest side and let $D$ be the midpoint of $AB$. Let $P$ be a point in the interior of the triangle $ABC$ such that $\angle CAP = \angle CBP = \angle ACB$. From the point $P$, we draw perpendicular lines on $BC$ and $AC$ where the intersection point with $BC$ is $M$, and with $AC$ is $N$ . Through the point $M$ we draw a line parallel to $AC$, and through $N$ parallel to $BC$. These lines intercept at the point $K$. Prove that $D$ is the center of the circumscribed circle for the triangle $MNK$.