Problem

Source:

Tags: combinatorics



Let $a_1, a_2, \cdots, a_{2n}$ be $2n$ elements of $\{1, 2, 3, \cdots, 2n-1\}$ ($n>3$) with the sum $a_1+a_2+\cdots+a_{2n}=4n$. Prove that exist some numbers $a_i$ with the sum is $2n$.