Determine all functions $f: \mathbb{R} \backslash \{0 \} \rightarrow \mathbb{R}$ such that, for all nonzero $x$: $$ f(\frac{1}{x}) \ge 1 -f(x) \ge x^2f(x) $$
Source: Latvian TST for Baltic Way 2021 P2
Tags: inequalities
Determine all functions $f: \mathbb{R} \backslash \{0 \} \rightarrow \mathbb{R}$ such that, for all nonzero $x$: $$ f(\frac{1}{x}) \ge 1 -f(x) \ge x^2f(x) $$