Let $ f (n) $ be a function that fulfills the following properties: $\bullet$ For each natural $ n $, $ f (n) $ is an integer greater than or equal to $ 0 $. $\bullet$ $f (n) = 2010 $, if $ n $ ends in $ 7 $. For example, $ f (137) = 2010 $. $\bullet$ If $ a $ is a divisor of $ b $, then: $ f \left(\frac {b} {a} \right) = | f (b) -f (a) | $. Find $ \displaystyle f (2009 ^ {2009 ^ {2009}}) $ and justify your answer.
Problem
Source: OIFMAT I 2010 day 1 p1 - Chilean Math Forum FMAT Olympiad https://artofproblemsolving.com/community/c2484778_oifmat
Tags: number theory, functional