$x^3 \equiv y^3 \pmod{p}$ so $y^3-x^3 \equiv 0 \pmod{p}$. By difference of cubes $(y-x)(y^2+xy+x^2) \equiv 0 \pmod{p}$, but since $p>y>x$, $y-x \not\equiv 0 \pmod{p}$ and thus $y^2+xy+x^2 \equiv 0 \pmod{p}$. Similarly $y^2+yz+z^2 \equiv 0 \pmod{p}$ and $z^2+xz+x^2 \equiv 0 \pmod{p}$. Subtracting the first two equations gives $z^2-x^2+yz-xy \equiv 0 \pmod{p}$, or $(z-x)(z+x+y) \equiv \mod{p}$. But similar to before, $z-x \not\equiv 0 \pmod{p}$ and thus $x+y+z \equiv 0 \pmod{p}$.
Since $y^2+xy+x^2 \equiv 0 \pmod{p}$, $(x+y)^2 \equiv xy \pmod{p}$. But $(x+y)^2 \equiv (-z)^2 \equiv z^2 \pmod{p}$ so thus $z^2 \equiv xy \pmod{p}$ and thus $x^2+xy+y^2 \equiv x^2 + y^2 + z^2 \equiv 0 \pmod {p}$. The rest of the solution follows according to above.