Problem

Source: SAMC 2021 booklet p9 probs without sol

Tags: geometry, geometry proposed



Let $ABC$ be a triangle inscribed in circle $(O)$ with diamter $KL$ passes through the midpoint $M$ of $AB$ such that $L, C$ lie on the different sides respect to $AB$. A circle passes through $M, K $cuts $LC$ at$ P, Q $(point $P$ lies between$ Q, C$). The line $KQ $cuts $(LMQ)$ at $R$. Prove that $ARBP$ is cyclic and$ AB$ is the symmedian of triangle $APR$. Please help