Problem

Source: S.A booklet 2021 P8 in problems without solution

Tags: geometry, IMO, geometry unsolved



Let $ABC$ be an non-isosceles triangle with incenter $I$, circumcenter $O$ and a point $D$ on segment $BC $such that $(BID) $cut segments $AB $ at$ E $and $(CID) $cuts segment $AC $at $F$ Circle $(DEF)$ cuts segments $AB$,$AC $again at $M,N$. Let $P$ The intersection of $IB$ and $DE $ , $Q$ The intersection of $IC$and $DF$ . Prove that $EN,FM,PQ $are parallel and the median of vertex $I$in triangle $IPQ$ bisects the arc $BAC$ of $(O)$.