Problem

Source: 2021 Czech-Polish-Slovak Match Junior, team p1 CPSJ

Tags: geometry, trapezoid, equal areas



Consider a trapezoid $ABCD$ with bases $AB$ and $CD$ satisfying $| AB | > | CD |$. Let $M$ be the midpoint of $AB$. Let the point $P$ lie inside $ABCD$ such that $| AD | = | PC |$ and $| BC | = | PD |$. Prove that if $| \angle CMD | = 90^o$, then the quadrilaterals $AMPD$ and $BMPC$ have the same area.