Problem

Source: Balkan MO 2021 P2

Tags: functional equation, algebra, Balkan Mathematics Olympiad



Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $f(x+f(x)+f(y))=2f(x)+y$ for all positive reals $x,y$. Proposed by Athanasios Kontogeorgis, Greece