Problem

Source: 2021 MEMO T-5

Tags: geometry, circumcircle, MEMO 2021, memo, menelaus theorem



Let $AD$ be the diameter of the circumcircle of an acute triangle $ABC$. The lines through $D$ parallel to $AB$ and $AC$ meet lines $AC$ and $AB$ in points $E$ and $F$, respectively. Lines $EF$ and $BC$ meet at $G$. Prove that $AD$ and $DG$ are perpendicular.