Problem

Source: Israeli Olympic Revenge 2021, Problem 4

Tags: inequalities



Prove that the inequality $$\frac{4}{a+bc+4}+\frac{4}{b+ca+4}+\frac{4}{c+ab+4}\le 1+\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$.