Prove that the inequality $$\frac{4}{a+bc+4}+\frac{4}{b+ca+4}+\frac{4}{c+ab+4}\le 1+\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$.
Problem
Source: Israeli Olympic Revenge 2021, Problem 4
Tags: inequalities
29.08.2021 22:16
Arqady post this before.
30.08.2021 03:44
Prove or disprove $$\frac{1}{a+bc+4}+\frac{1}{b+ca+4}+\frac{1}{c+ab+4}\le \frac{1}{2}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$.
30.08.2021 08:19
sqing wrote: Prove or disprove $$\frac{1}{a+bc+4}+\frac{1}{b+ca+4}+\frac{1}{c+ab+4}\le \frac{1}{2}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$. It's wrong. Try $a=2$ and $b=c=0$.
30.08.2021 08:52
sqing wrote: Prove or disprove $$\frac{1}{a+bc+4}+\frac{1}{b+ca+4}+\frac{1}{c+ab+4}\le \frac{1}{2}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$. Reverse inequality is true.
30.08.2021 10:12
erzhane wrote: sqing wrote: Prove or disprove $$\frac{1}{a+bc+4}+\frac{1}{b+ca+4}+\frac{1}{c+ab+4}\le \frac{1}{2}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4$. Reverse inequality is true. Yes, because $ab+ac+bc\leq2+abc$ and $a+b+c\leq3.$
30.08.2021 10:32
Thanks. Then $$2\le \frac{4}{a+bc+4}+\frac{4}{b+ca+4}+\frac{4}{c+ab+4}\le 1+\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}$$holds for all positive reals $a,b,c$ such that $a^2+b^2+c^2+abc=4.$
01.09.2021 21:05
Hmm, any proof?
19.05.2024 17:17
$\frac 4{a+bc+4}\le \frac 1{2a+1}+\frac a{bc+2a}.\Box$