Problem

Source: Israeli Olympic Revenge 2021, Problem 3

Tags: geometry, circumcircle



Let $ABC$ be a triangle. A point $P$ is chosen inside $\triangle ABC$ such that $\angle BPC+\angle BAC=180^{\circ}$. The lines $AP,BP,CP$ intersect $BC,CA,AB$ at $P_A,P_B,P_C$ respectively. Let $X_A$ be the second intersection of the circumcircles of $\triangle ABC$ and $\triangle AP_BP_C$ . Similarly define $X_B,X_C$. Let $B'$ be the intersection of lines $AX_A,CX_C$, and let $C'$ be the intersection of lines $AX_A,BX_B$. Prove that lines $BB'$ and $CC'$ intersect on the circumcircle of $\triangle AP_BP_C$.