Problem

Source: Israeli Olympic Revenge 2018, Problem 3

Tags: geometry, circumcircle, Euler, perpendicular bisector



Let $ABC$ be a triangle with circumcircle $\omega$ and circumcenter $O$. The tangent line to from $A$ to $\omega$ intersects $BC$ at $K$. The tangent line to from $B$ to $\omega$ intersects $AC$ at $L$. Let $M,N$ be the midpoints of $AK,BL$ respectively. The line $MN$ is named by $\alpha$. The feet of perpendicular from $A,B,C$ to the edges of $\triangle ABC$ are named by $D,E,F$ respectively. The perpendicular bisectors of $EF,DF,DE$ intersect $\alpha$ at $X,Y,Z$ respectively. Let $AD,BE,CF$ intersect $\omega$ again at $D',E',F'$ respectively. If $H$ is the orthocenter of $ABC$, prove that the lines $XD',YE',ZF',OH$ are concurrent.