Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_A$ passes through the points $A$ and $H$ and is tangent to the circumcircle of the triangle $ABC$. Similarly, define the points $X_B$ and $X_C$. Let $O_A$, $O_B$ and $O_C$ be the reflections of $O$ with respect to sides $BC$, $CA$ and $AB$, respectively. Prove that the lines $O_AX_A$, $O_BX_B$ and $O_CX_C$ are concurrent.
Problem
Source: 2018 Cono Sur Shortlist G6
Tags: geometry, orthocenter, circumcircle, tangent circles, concurrency, concurrent