Let $ABC$ be an acute triangle with $AC > AB$. Let $\Gamma$ be the circle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smaller arc $BC$ of this circle. Let $I$ be the incenter of $ABC$ and let $E$ and $F$ be points on sides $AB$ and $AC$, respectively, such that $AE = AF$ and $I$ lies on the segment $EF$. Let $P$ be the second intersection point of the circumcircle of the triangle $AEF$ with $\Gamma$ with $P \ne A$. Let $G$ and $H$ be the intersection points of the lines $PE$ and $PF$ with $\Gamma$ different from $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines AB and $AC$, respectively. Show that the line $JK$ passes through the midpoint of $BC$.