Problem

Source: CGMO 2021 P5

Tags: number theory, Diophantine equation



Proof that if $4$ numbers (not necessarily distinct) are picked from $\{1, 2, \cdots, 20\}$, one can pick $3$ numbers among them and can label these $3$ as $a, b, c$ such that $ax \equiv b \;(\bmod\; c)$ has integral solutions.