Problem

Source: CGMO 2021 P4

Tags: number theory, infinite sequence, Integer sequence



Call a sequence of positive integers $(a_n)_{n \ge 1}$ a "CGMO sequence" if $(a_n)_{n \ge 1}$ strictly increases, and for all integers $n \ge 2022$, $a_n$ is the smallest integer such that there exists a non-empty subset of $\{a_{1}, a_{2}, \cdots, a_{n-1} \}$ $A_n$ where $a_n \cdot \prod\limits_{a \in A_n} a$ is a perfect square. Proof: there exists $c_1, c_2 \in \mathbb{R}^{+}$ s.t. for any "CGMO sequence" $(a_n)_{n \ge 1}$ , there is a positive integer $N$ that satisfies any $n \ge N$, $c_1 \cdot n^2 \le a_n \le c_2 \cdot n^2$.