Problem

Source: CGMO 2021 P2

Tags: geometry, incenter, sharky-devil



In acute triangle $ABC$ ($AB \neq AC$), $I$ is its incenter and $J$ is the $A$-excenter. $X, Y$ are on minor arcs $\widehat{AB}$ and $\widehat{AC}$ respectively such that $\angle{AXI}=\angle{AYJ}=90^{\circ}$. $K$ is on line $BC$ such that $KI=KJ$. Proof that line $AK$ bisects $\overline{XY}$.