Let $n \in \mathbb{N}^+,$ $x_1,x_2,...,x_{n+1},p,q\in \mathbb{R}^+ $ , $p<q$ and $x^p_{n+1}>\sum_{i=1}^{n}x^p_{i}.$ Prove that $(1)x^q_{n+1}>\sum_{i=1}^{n}x^q_{i};$ $(2)\left(x^p_{n+1}-\sum_{i=1}^{n}x^p_{i}\right)^{\frac{1}{p}}<\left(x^q_{n+1}-\sum_{i=1}^{n}x^q_{i}\right)^{\frac{1}{q}}.$
Problem
Source: Aug 12, 2021 Changchun
Tags: inequalities, algebra, China, CGMO
14.08.2021 04:02
sqing wrote: et $n \in \mathbb{N}^+,$ $x_1,x_2,...,x_{n+1},p,q\in \mathbb{R}^+ $ , $p<q$ and $x^p_{n+1}>\sum_{i=1}^{n}x^p_{i}.$ Prove that $(1)x^q_{n+1}>\sum_{i=1}^{n}x^q_{i};$ $(2)\left(x^p_{n+1}-\sum_{i=1}^{n}x^p_{i}\right)^{\frac{1}{p}}<\left(x^q_{n+1}-\sum_{i=1}^{n}x^q_{i}\right)^{\frac{1}{q}}.$
Attachments:
14.08.2021 08:33
@above Could you translate your picture in the first post into LaTeX (and delete the extra $\$$ ) like Quote: Let $n \in \mathbb{N}^+,$ $x_1,x_2,...,x_{n+1},p,q\in \mathbb{R}^+ $ , $p<q$ and $x^p_{n+1}>\sum_{i=1}^{n}x^p_{i}.$ Prove that $(1)x^q_{n+1}>\sum_{i=1}^{n}x^q_{i};$ $(2)\left(x^p_{n+1}-\sum_{i=1}^{n}x^p_{i}\right)^{\frac{1}{p}}<\left(x^q_{n+1}-\sum_{i=1}^{n}x^q_{i}\right)^{\frac{1}{q}}.$ Otherwise, if it is added into a collection, the picture will be invisible, and there will be an error when generating PDF. Thank you.
14.08.2021 09:39
17.08.2021 18:44
This is an elementary solution I found. First, a little lemma that would shorten the proof: Lemma: $a_1, a_2, \dots, a_n \in \mathbb{R}^{+}$ and $r>1$, then $(a_1+a_2+...+a_n)^r > a_1^r+a_2^r+...+a_n^r$. Proof: Let's proof this lemma by induction. Consider $f(x)=(a_1+x)^r-a_1^r-x^r$, since $f'(x)=r(a_1+x)^{r-1}-rx^{r-1}>0$, we have that $f$ is a strictly increasing function. Therefore $f(a_2) > f(0)=0$, which means $(a_1+a_2)^r>a_1^r+a_2^r.$ Assume that the lemma is true for $n-1$, then $$\left(\sum_{i=1}^{n}a_i\right)^r = ((a_1+a_2)+...+a_n)^r > (a_1+a_2)^r+a_3^r+...+a_n^r > \sum_{i=1}^{n}a_i^r,$$so by induction the lemma is correct. (1) $x_{n+1}^q=\left(x_{n+1}^p\right)^{\frac{q}{p}} > \left(\sum_{i=1}^{n}x_i^p\right)^{\frac{q}{p}} > \sum_{i=1}^{n}x_i^q$. (2) On the other hand, by our lemma, \begin{align*} \sum_{i=1}^{n}x_i^q + \left(x_{n+1}^p - \sum_{i=1}^{n}x_i^p \right)^{\frac{q}{p}} &= \sum_{i=1}^{n}(x_i^p)^{\frac{q}{p}} + \left(x_{n+1}^p - \sum_{i=1}^{n}x_i^p \right)^{\frac{q}{p}} \\ \sum_{i=1}^{n}x_i^q + \left(x_{n+1}^p - \sum_{i=1}^{n}x_i^p \right)^{\frac{q}{p}} &< \left(x_{n+1}^p\right)^{\frac{q}{p}} \\ \left(x_{n+1}^p - \sum_{i=1}^{n}x_i^p \right)^{\frac{q}{p}} &< x_{n+1}^q - \sum_{i=1}^{n}x_i^q \\ \left(x_{n+1}^p - \sum_{i=1}^{n}x_i^p \right)^{\frac{1}{p}} &< \left(x_{n+1}^q - \sum_{i=1}^{n}x_i^q \right)^{\frac{1}{p}}. \end{align*}
17.08.2021 19:16
FishHeadTail wrote: This is an elementary solution I found. I basically had the same solution. But I find it a bit funny that you call it "elementary" since it uses analysis (while the previous solution by sqing is actually elementary!).
17.08.2021 19:21
Well most steps are. And the lemma "looks" true too, doesn't it?
17.08.2021 19:39
Yes, I mean the elementary proof "à la Sqing" of the inequality $(a+b)^r>a^r+b^r$ for $r>1$ (which is the key inductive step of your lemma) is just \[\left(\frac{a}{a+b}\right)^r+\left(\frac{b}{a+b}\right)^r<\frac{a}{a+b}+\frac{b}{a+b}=1.\]