Problem

Source: Aug 12, 2021 Changchun

Tags: inequalities, algebra, China, CGMO



Let $n \in \mathbb{N}^+,$ $x_1,x_2,...,x_{n+1},p,q\in \mathbb{R}^+ $ , $p<q$ and $x^p_{n+1}>\sum_{i=1}^{n}x^p_{i}.$ Prove that $(1)x^q_{n+1}>\sum_{i=1}^{n}x^q_{i};$ $(2)\left(x^p_{n+1}-\sum_{i=1}^{n}x^p_{i}\right)^{\frac{1}{p}}<\left(x^q_{n+1}-\sum_{i=1}^{n}x^q_{i}\right)^{\frac{1}{q}}.$