Problem

Source: 2021 Centroamerican and Caribbean Mathematical Olympiad, P2

Tags: geometry, circumcircle, cyclic quadrilateral



Let $ABC$ be a triangle and let $\Gamma$ be its circumcircle. Let $D$ be a point on $AB$ such that $CD$ is parallel to the line tangent to $\Gamma$ at $A$. Let $E$ be the intersection of $CD$ with $\Gamma$ distinct from $C$, and $F$ the intersection of $BC$ with the circumcircle of $\bigtriangleup ADC$ distinct from $C$. Finally, let $G$ be the intersection of the line $AB$ and the internal bisector of $\angle DCF$. Show that $E,\ G,\ F$ and $C$ lie on the same circle.