Problem

Source:

Tags: combinatorics, triangulation, convex quadrilateral, combinatorical geometry



Let $\mathcal{P}$ be a convex polygon and $\textbf{T}$ be a triangle with vertices among the vertices of $\mathcal{P}$. By removing $\textbf{T}$ from $\mathcal{P}$, we end up with $0, 1, 2,$ or $3$ smaller polygons (possibly with shared vertices) which we call the effect of $\textbf{T}$. A triangulation of $P$ is a way of dissecting it into some triangles using some non-intersecting diagonals. We call a triangulation of $\mathcal{P}$ $\underline{\text{beautiful}}$, if for each of its triangles, the effect of this triangle contains exactly one polygon with an odd number of vertices. Prove that a triangulation of $\mathcal{P}$ is beautiful if and only if we can remove some of its diagonals and end up with all regions as quadrilaterals.