Problem

Source: APMO 2009 Q.4

Tags: arithmetic sequence, number theory, relatively prime, number theory unsolved, Hi



Prove that for any positive integer $ k$, there exists an arithmetic sequence $ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, ... ,\frac{a_k}{b_k}$ of rational numbers, where $ a_i, b_i$ are relatively prime positive integers for each $ i = 1,2,...,k$ such that the positive integers $ a_1, b_1, a_2, b_2, ..., a_k, b_k$ are all distinct.