Let $Oxy$ be a fixed rectangular coordinate system in the plane. Each ordered pair of points $A_1, A_2$ from the same plane which are different from O and have coordinates $x_1, y_1$ and $x_2, y_2$ respectively is associated with real number $f(A_1,A_2)$ in such a way that the following conditions are satisfied: (a) If $OA_1 = OB_1$, $OA_2 = OB_2$ and $A_1A_2 = B_1B_2$ then $f(A_1,A_2) = f(B_1,B_2)$. (b) There exists a polynomial of second degree $F(u,v,w,z)$ such that $f(A_1,A_2)=F(x_1,y_1,x_2,y_2)$. (c) There exists such a number $\phi \in (0,\pi)$ that for every two points $A_1, A_2$ for which $\angle A_1OA_2 = \phi$ is satisfied $f(A_1,A_2) = 0$. (d) If the points $A_1, A_2$ are such that the triangle $OA_1A_2$ is equilateral with side $1$ then$ f(A_1,A_2) = \frac12$. Prove that $f(A_1,A_2) = \overrightarrow{OA_1} \cdot \overrightarrow{OA_2}$ for each ordered pair of points $A_1, A_2$.