Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.
Problem
Source: 1995 Bulgaria NMO, Round 4, p4
Tags: geometry, midpoint, equal circles, inradii, Equilateral