Quadratic trinomials $F$ and $G$ satisfy $F(F(x)) > F(G(x)) > G(G(x))$ for all real $x$. Prove that $F(x) > G(x)$ for all real $x$.
Source: Tuymaada 2021 / J1
Tags:
Quadratic trinomials $F$ and $G$ satisfy $F(F(x)) > F(G(x)) > G(G(x))$ for all real $x$. Prove that $F(x) > G(x)$ for all real $x$.