Problem

Source: 2021 Taiwan Mathematics Olympiad

Tags: combinatorics, Taiwan



Find the largest $K$ satisfying the following: Given any closed intervals $A_1,\ldots, A_N$ of length $1$ where $N$ is an arbitrary positive integer. If their union is $[0,2021]$, then we can always find $K$ intervals from $A_1,\ldots, A_N$ such that the intersection of any two of them is empty.