Problem

Source: ISL 2020 N5

Tags: IMO Shortlist, number theory, IMO Shortlist 2020, functional equation, nonnegative integers



Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: $(i)$ $f(n) \neq 0$ for at least one $n$; $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$.