Problem

Source: Turkey NMO 2003 Problem 6

Tags: combinatorics unsolved, combinatorics



An assignment of either a $ 0$ or a $ 1$ to each unit square of an $ m$x$ n$ chessboard is called $ fair$ if the total numbers of $ 0$s and $ 1$s are equal. A real number $ a$ is called $ beautiful$ if there are positive integers $ m,n$ and a fair assignment for the $ m$x$ n$ chessboard such that for each of the $ m$ rows and $ n$ columns , the percentage of $ 1$s on that row or column is not less than $ a$ or greater than $ 100-a$. Find the largest beautiful number.