Let $ f: \mathbb R \rightarrow \mathbb R$ be a function such that $ f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$ for all $ x_1 , x_2 \in \mathbb R$ and $ t\in (0,1)$. Show that $ \sum_{k=1}^{2003}f(a_{k+1})a_k \geq \sum_{k=1}^{2003}f(a_k)a_{k+1}$ for all real numbers $ a_1,a_2,...,a_{2004}$ such that $ a_1\geq a_2\geq ... \geq a_{2003}$ and $ a_{2004}=a_1$