Problem

Source: Bulgaria 1974 P3

Tags: inequalities



(a) Find all real numbers $p$ for which the inequality $$x_1^2+x_2^2+x_3^2\ge p(x_1x_2+x_2x_3)$$is true for all real numbers $x_1,x_2,x_3$. (b) Find all real numbers $q$ for which the inequality $$x_1^2+x_2^2+x_3^2+x_4^2\ge q(x_1x_2+x_2x_3+x_3x_4)$$is true for all real numbers $x_1,x_2,x_3,x_4$. I. Tonov