Problem

Source: Bulgaria 1974 P2

Tags: Polynomials, number theory



Let $f(x)$ and $g(x)$ be non-constant polynomials with integer positive coefficients, $m$ and $n$ are given natural numbers. Prove that there exists infinitely many natural numbers $k$ for which the numbers $$f(m^n)+g(0),f(m^n)+g(1),\ldots,f(m^n)+g(k)$$are composite. I. Tonov