Problem

Source: Bulgaria 1979 P4

Tags: quadratics, parameterization, function, Polynomials, algebra



For each real number $k$, denote by $f(k)$ the larger of the two roots of the quadratic equation $$(k^2+1)x^2+10kx-6(9k^2+1)=0.$$Show that the function $f(k)$ attains a minimum and maximum and evaluate these two values.