Problem

Source: Bulgaria 1989 P6

Tags: number theory, Divisibility



Let $x,y,z$ be pairwise coprime positive integers and $p\ge5$ and $q$ be prime numbers which satisfy the following conditions: (i) $6p$ does not divide $q-1$; (ii) $q$ divides $x^2+xy+y^2$; (iii) $q$ does not divide $x+y-z$. Prove that $x^p+y^p\ne z^p$.