Problem

Source: Bulgaria 1989 P4

Tags: combinatorics, number theory



At each of the given $n$ points on a circle, either $+1$ or $-1$ is written. The following operation is performed: between any two consecutive numbers on the circle their product is written, and the initial $n$ numbers are deleted. Suppose that, for any initial arrangement of $+1$ and $-1$ on the circle, after finitely many operations all the numbers on the circle will be equal to $+1$. Prove that $n$ is a power of two.