Problem

Source: Bulgaria 1989 P3

Tags: Polynomials, algebra, irreducibility



Let $p$ be a real number and $f(x)=x^p-x+p$. Prove that: (a) Every root $\alpha$ of $f(x)$ satisfies $|\alpha|<p^{\frac1{p-1}}$; (b) If $p$ is a prime number, then $f(x)$ cannot be written as the product of two non-constant polynomials with integer coefficients.