Let $n=p_1p_2\cdots p_s$, where $p_1,\ldots,p_s$ are distinct odd prime numbers. (a) Prove that the expression $$F_n(x)=\prod\left(x^{\frac n{p_{i_1}\cdots p_{i_k}}}-1\right)^{(-1)^k},$$where the product goes over all subsets $\{p_{i_1},\ldots,p_{i_k}\}$ or $\{p_1,\ldots,p_s\}$ (including itself and the empty set), can be written as a polynomial in $x$ with integer coefficients. (b) Prove that if $p$ is a prime divisor of $F_n(2)$, then either $p\mid n$ or $n\mid p-1$.