Problem

Source: Bulgaria 1990 P2

Tags: conics, parabola



Let be given a real number $\alpha\ne0$. Show that there is a unique point $P$ in the coordinate plane, such that for every line through $P$ which intersects the parabola $y=\alpha x^2$ in two distinct points $A$ and $B$, segments $OA$ and $OB$ are perpendicular (where $O$ is the origin).