Problem

Source: XI All-Ukrainian Tournament of Young Mathematicians, Qualifying p15

Tags: geometry, incenter, inequalities, circumcircle, Ukrainian TYM



Let $I$ be the point of intersection of the angle bisectors of the $\vartriangle ABC$, $W_1,W_2,W_3$ be point of intersection of lines $AI, BI, CI$ with the circle circumscribed around the triangle, $r$ and $R$ be the radii of inscribed and circumscribed circles respectively. Prove the inequality $$IW_1+ IW_2 + IW_3\ge 2R + \sqrt{2Rr.}$$