Inside the convex polygon $A_1A_2...A_n$ , there is a point $M$ such that $\sum_{k=1}^n \overrightarrow {A_kM} = \overrightarrow{0}$. Prove that $nP\ge 4d$, where $P$ is the perimeter of the polygon, and $d=\sum_{k=1}^n |\overrightarrow {A_kM}|$ . Investigate the question of the achievement of equality in this inequality.
Problem
Source: X All-Ukrainian Tournament of Young Mathematicians, Qualifying p12
Tags: geometric inequality, inequalities, vector, geometry, Ukrainian TYM